Product-X 3.0 QA Plan

Company-A
Product-X 3.0
 QA and Test Plan

Includes testing of all integrated components with
Applicaton-S 2.0 and Application-B 6.0.

Author(s): Product-X QA Team
Draft 0.6

Date

10/26/99

1.
Scope
4
1.1
Purpose
4
1.2
Introduction
4
2.
Referenced Documents
4
3.
Overview
5
3.1
Resources
5
3.1.1
Staff
5
3.1.2
Equipment
5
3.2
QA Overview
5
3.3
Overview Schedule
6
3.4 Risk Assessment
6
1-
Only a month and a half of testing after code-complete.
7
2-
Difficult integration process.
7
4.
QA Activities
8
4.1
List of QA Actives by Phase
8
4.2
QA Schedule
10
5.
Software QA Activities—Phase Independent
11
5.1
Test Cycles
11
5.1.1
Build Acceptance
11
5.1.2
Regression Testing
11
5.1.3
Scheduled Test Execution
11
5.1.4
Automated Test Suite Execution
11
5.2
Software Quality Records
11
5.2.1
Corrective Action System
11
5.2.2
QA Status Reporting
14
5.2.3
Metrics
14
6.
Test Specifications
15
6.1
Functional Testing
15
6.1.1
F-PRODUCT-Y Functional testing of Commerce Platform.
15
6.1.2
F-TH Adoption of Engineering Test Harness into QA.
15
6.1.3
F-SAMPLE PRODUCT-Y Sample Testing
15
6.1.4
F-SDK Final SDK Functional Testing and test harness enhancements
16
6.1.5
F-MVF Functional testing of PortalWare
16
6.1.6
F-MVR PortalWare Regression Test
16
6.2
System Integration
16
6.2.1
I-L2 Level 2 Install and End to End Test
16
6.2.2
I-L2R Level 2 Rebuild
17

1. Scope

1.1 Purpose

This document will describe the activities, process and methods for the QA and related activities during final phases of the Product-X 3.0-project cycle.

1.2 Introduction

This plan covers testing of the Product-X Commerce Platform, PRODUCT-Y and variant packages, PortalWare, Application-Z, Gateway and supporting components in a fully integrated environment. Application-B 6.0 will be included as a test client. The plan assumes that project will be completed as described in the December release plan.

2. Referenced Documents

	Document Name
	Version
	Date

	
	
	

	
	
	

	
	
	

Overview

2.1 Resources

2.1.1 Staff

The following is a preliminary staffing plan.

	
	#
	Who?

	Product-X 3.0 Continuation QA
	4
	Bob, Joe, Steve, Tim

	PortalWare QA 3.1
	1
	Jim

	System Integration
	1
	Jack, Erich

	Integration Testing
	2
	Sam, Al

	Staging and Final Test
	0
	Erich/Tony (not full time task)

2.1.2 Equipment

Described in a separate document.

2.2 QA Overview

There will be four phases for QA—Integration Testing, System Testing and Final Test. In order to optimize the schedule, the phases will overlap. Each will have an owner in QA that will be responsible for test strategy and execution. There will be functional testing for both the Product-X and PortalWare.

The following is a list of the phases with major tasks listed.

Integration Testing (Owner: Sam)

1- Functional testing of components added after 23 October 99.

2- Adoption of Engineering Test Harness into QA

3- PRODUCT-Y Sample Testing.

4- Final SDK Testing and test harness enhancements. (Owner: Bob)

PortalWare Functional Test (Owner: Jim)

1- Functional testing of PortalWare components added after 23 October 99.

2- Regression Test

System Integration (Owner: Sam)

1- Level 2 Install and End to End Test

2- Level 2 Rebuild

3- 2.X Bridge Integration

4- Simulated Integrated partner Integration

5- Final Testing Community
Integration Testing (Owner: Sam)

1- Level 2 End-to-end Verification

2- End-to-end Test Scenarios

3- 2.X Bridge Testing

4- Simulated Partner Management
5- Performance

6- Failure Analysis

Final Testing (Owner: Erich Gatejen)

1- PRODUCT-Y Packaging and Final Test (Owner: Jim)

2- SDK-Pro Packaging and Final Test (Owner: Bob)

3- Final Staging

4- Build Verification

5- Product-X Packaging and Final Test

6- PortalWare Packaging and Final Test

2.3 Overview Schedule

Below is a diagram is a high-level schedule:

3.4 Risk Assessment

The following is a list of project risks that are identified by QA.

1- Only a month and a half of testing after code-complete.

There will be only a month and a half after code complete to fix bugs, stabilize the system, complete packaging, and test staging into operations. Any serious problems will drastically effect the schedule; it can take a lot of time to architect major changes, implement and test them, and then re-stabilize the whole system.

Solutions:

a) We will need to aggressively postpone bug fixes. We will want to push-back as many bugs as we can that do not affect a known need in the next 6 months.

b) We should closely control all changes to the software, including features and bug fixes.

2- Difficult integration process.

Integrating the system has been long, painful processes. We do not have a repeatable procedure for building a complete end-to-end test environment. Documentation is incomplete and not generic enough to allow ground up, clean-lab install

Solutions:

a) Both development engineering and QA will build test environments during integration. The development engineers will document the base installation, configuration and integration of their components. QA will consume the documents and feed additions and changes to the documentation group.

b) Configuration points within the system will be under strict change control. All changes must go through the QA group. (This will ensure that hey are sufficiently generic or at least well documents, such that they are applicable to clean installations.)

c) QA will perform multiple ground-up buildups of the integrated environment. This will be done in the Staging lab. The process will be documented and refined until the process is clean enough to perform in the Operations staging environment without error. QA will invite the documentation and deployment groups to observe and/or assist this activity.

QA Activities

2.4 List of QA Actives by Phase

The following are the QA components. They are derived from the major tasks listed in section 3.3. This can be seen as a high-level task list for QA. Each item will be tracked for progress.

	
	Functional Testing

	
	
	

	F-PRODUCT-Y
	Functional testing of Product-Y

	1)
	
	Attachments

	2)
	
	Events

	3)
	
	Framework

	F-TH
	Adoption of Engineering Test Harness into QA.

	1)
	
	QA Run

	2)
	
	Set up automated run

	3)
	
	Extend to identify QA process

	F-SAMPLE
	PRODUCT-Y Sample Testing

	1)
	
	Non-Connected Samples

	2)
	
	Connected Samples

	F-SDK
	Final SDK Functional Testing and test harness enhancements

	1)
	
	SDK Pro Plan

	F-MVF
	Functional testing of PortalWare

	1)
	
	Single login

	2)
	
	Registration

	F-MVR
	PortalWare Regression Test

	1)
	
	Legacy test suite run

	2)
	
	Ad Hoc content

	3)
	
	Site map

	
	
	

	
	System Integration

	
	
	

	I-L2
	Level 2 Install and End to End Test

	1)
	
	Spanned L1/L2 Build-out

	2)
	
	Collapsed L1/L2 Build-out

	I-L2R
	Level 2 Rebuild

	1)
	
	Fresh rebuild from documented procedure

	2)
	
	Clean rebuild from documented procedure

	I-2X
	2.X Bridge Integration

	1)
	
	Bridge integration

	2)
	
	Staging lab merge

	I-SSI
	Simulated Integrated partner Integration

	1)
	
	Simulated type-b partner install

	2)
	
	Simulated type-b partner Add and Transact use case.

	I-TC
	Final Testing Community

	1)
	
	Final clean build-out.

	
	
	

	
	Integration Test

	
	
	

	S-L2
	Level 2 End-to-end Verification

	1)
	
	Integrated partner

	2)
	
	Integrated partner

	3)
	
	Hosted partner

	S-US
	Use Cases

	1)
	
	Execute in Testing Community

	S-2X
	2.X Bridge Testing

	1)
	
	Conduit Functions

	2)
	
	2.X Functions

	3)
	
	End-to-end

	S-PARTNER
	Simulated Partner Management

	1)
	
	Partner Matrix

	2)
	
	Remove Partner

	S-PERF
	Performance

	1)
	
	Stress and Throughput

	2)
	
	Synchronous Stress and Throughput

	3)
	
	End to end Stress and Throughput

	S-FA
	Failure Analysis

	1)
	
	Failure identification

	2)
	
	Failure test

	3)
	
	Ad hoc adverse environment

	
	
	

	
	Final Testing

	
	
	

	A-PRODUCT-Y
	PRODUCT-Y Packaging and Final Test

	1)
	
	Packaging

	2)
	
	Image verification (each build)

	3)
	
	Final Image verification

	A-SDK
	SDK Packaging and Final Test
	1)
	
	Packaging

	1)
	
	Packaging

	2)
	
	Image verification (each build)

	3)
	
	Final Image verification

	A-STAGE
	Final Staging

	1)
	
	Ops Build-out

	A-BUILD
	Build Verification

	1)
	
	Manifest

	2)
	
	Verification

	A-MKS
	Product-X Packaging and Final Test

	1)
	
	Packaging

	2)
	
	Image verification (each build)

	3)
	
	Final Image verification

	A-MV
	PortalWare Packaging and Final Test

	1)
	
	Packaging

	2)
	
	Image verification (each build)

	3)
	
	Final Image verification

2.5 QA Schedule

The following shows the QA schedule items relevant to the overall project schedule.

The QA schedule is in a separate project document.
Software QA Activities—Phase Independent

2.6 Test Cycles

Each test cycle will last the time between each QA build. Until final and staging testing, there will be one build a week. We may choose a greater frequency during the final stages of the project. There are four activities performed during a cycle; they are listed below in typical sequence.

2.6.1 Build Acceptance

QA will install the build on a test server. A quick Basic Acceptance Test (BAT) will be performed. If there are significant problems in the build that prevent testing, QA will seek to fix or replace the build. Otherwise, regression and scheduled testing will begin.

The Basic Acceptance test should take no longer than a couple hours.

2.6.2 Regression Testing

QA will confirm bug fixes and possibly test previously checked areas. All bugs that were fixed and installed in the build should be verified by engineering before the install and QA during Regression Testing. A bug that does not pass verification (does not appear to be fixed) will be reopened. Testing will continue, unless the bug is serious enough that it will prevent a significant amount of scheduled testing.

Components of the system that are significantly changed or re-engineered during later project phases will be re-tested, even if the functionality is not affected. QA will use a subset of the tests previously used for the component.

2.6.3 Scheduled Test Execution

QA will execute the tests that are scheduled for the cycle. Bugs, platform problems, scheduling errors and other factors may prevent QA from running all of the tests in one schedule. The QA project lead will attempt to resolve any issues and maintain the testing schedule—possibly rescheduling tests or extending the test cycle.

2.6.4 Automated Test Suite Execution

QA will maintain an automated test suite for the Commerce Platform. The suite will be automatically run for each nightly build. The suite will contain the test harness as designed and developed by the engineers with extensions from QA.

The test suite will not be comprehensive. We have neither the time nor resources to complete coverage of all areas. Rather, the QA team will focus on bulking up and polishing critical areas of the current test harness. When convenient we will integrate any other automated QA tests into the suite, but we cannot expect this to be many. Our priorities for the suite include testing the SDK compiler and Java-bean mapping.

2.7 Software Quality Records

2.7.1 Corrective Action System

The Corrective Action System includes the tools and processes used to track and resolve product issues. For the most part, the issues are software bugs.

Bug Reporting

Bugs will be reported in Onyx.

2.7.1.1 Bug Lifecycle

The following is a diagram of the bug lifecycle. The bug-tracking tool—BugTracker, drives much of the process. In each box the top text is the incident status and the bottom text is to whom the incident is assigned. The status/assignment pair is unique for each stop in the lifecycle. There will be a clear point of responsibility for each stop; they are listed after the diagram.

	Stop
	Responsible party
	Notes

	OPEN/QA Triage
	QA lead or delegate
	The incident should be reviewed.

	OPEN/Dev Triage
	Product-X triage team
	The incident should be reviewed. If it is to be fixed, then it should be assigned to a specific engineer by engineering management.

	OPEN/[engineer]
	A development engineer.
	Review it, then reject or fix it.

	REJECT/QA Triage
	QA Lead or delegate
	Review the reason for the reject and attempt to resolve.

	FIXED/QA Triage
	QA Lead or delegate
	Ensure the reporter verifies it. If the development engineer knows which QA engineer will regress the bug, then he may simply put that bug in his queue.

	VERIFIED/QA Lead
	QA Lead or delegate
	The incident is dead. The team may with to check for the bug again near the end of the project.

	CLOSED/QA Lead
	QA Lead or delegate
	The incident is dead forever.

	POSTPONE/PM
	Product-X Core Team.
	The incident is closed for the current project. The team must decide its disposition in the future.

2.7.1.2 Bug Tracking Tools and Reports

We will use Onyx as our bug-tracking tool. The following is a guide for how to fill out certain fields when creating a NEW incident.

Type: Bug

Assigned To: QA Triage

Product: Product-X
Status: Open

Priority (Choose one):

1- Critical: Use this for test stoppers and must-fix bugs.

2- High: Use this for serious bugs that seriously compromise the quality of the product.

3- Medium: Use this for bugs nice-to-fix issue knowing that it will be quickly postponed if not fixed by Final Testing.

4- Low: Use this for minor issues that could certainly be postponed.

Version: 3.0

Component (Choose one):

Admin

Directory

Tracking

Security

Server

Transports

Events

I18N

Packaging

2.7.1.3 Triage

There are two triage processes—QA Triage and Product-X Team Triage. For the QA Triage, the QA lead or designate will review the bugs assigned to QA Triage. This should be done at least every other day. For the Product-X Team Triage, the development leads will review the bugs assigned to MS Triage. This should be done at least once a week.

2.7.2 QA Status Reporting

QA will distribute a status report once a week. It will include general project status, staffing information, risks and risk reduction recommendations and metrics. The metrics are described below.

QA will write a Final QA Report at the end of the project. The document will serve as a QA post mortem, a source of historical data to assist in future project planning and an assessment of quality for the shipped product.

2.7.3 Metrics

The following are the metrics used to track progress. Each will be compiled once a week for the status report. QA can provide an interim report when requested.

The various metrics are given in order of importance. Since we do not have any historical data for this kind of project, a bug model would not be any better than a wild guess. We will have to rely on tack accomplishments and testing metrics to gauge our progress towards shipping.

2.7.3.1 Bug Criteria Milestones

The following defines the criteria for various milestones. Passing a date without meeting or implementing the criteria indicates serious risk to the ship date.

15 November – No check-ins without a bug report.

2 December – No bugs older than 3 days.

14 December – Milestone triage. Review and finalize disposition of all issues.

16 December – All bugs closed. No P1 or P2 bugs in system. RC1 distributed.

23 December – Ship. All issues closed or moved to future product.

Test Specifications

2.8 Functional Testing

2.8.1 F-PRODUCT-Y
Functional testing of Commerce Platform.

F-PRODUCT-Y-1 Attachments

Development engineering perform initial testing and then provide the test(s) to QA for inclusion in QA’s regression testing. A sample application will be included with the SDK to demonstrate the functionality. QA will test this sample application. Attachments will be generated using different document representation. Attachments will be marshaled and un-marshaled back to the original content.

F-PRODUCT-Y-2 Events

Basic event testing includes event generation, event subscription, event load testing, verify event catalog, and basic event API testing. Sample applications can also be used to testing this component.

F-PRODUCT-Y-3 Framework
Basic Framework testing includes generation of envelopes, checking for correctness of MIME headers, generation of attachments, basic Framework API testing, and marshaling and un-marshaling of documents using different representations. Sample applications can also be used to testing this component.

2.8.2 F-TH
Adoption of Engineering Test Harness into QA.

F-TH-1 QA Run

QA will perform a run of the engineer test harness for the platform server.

F-TH-2 Setup automated run

The test harness will be hooked into the nightly builds—like the SDK test harness.

F-TH-3 Identify QA process to extend harness

2.8.3 F-SAMPLE
PRODUCT-Y Sample Testing

QA will test all samples to verify that they will compile, run and reasonably demonstrate the particular function. QA will help ensure that adequate documentation exists for each sample.

F-SAMPLE-1 Non-Connected Samples

QA will verify that the non-connected samples do not communicate outside of the installed system in which they are executed and can be run on a single system.

F-SAMPLE-2 Connected Samples

Connected samples communicate outside the installed system in which they are executed. These will have to be executed in an integrated environment.

2.8.4 F-SDK
Final SDK Functional Testing and test harness enhancements

F-SDK-1 SDK Pro Plan

Testing will be as specified in a separate test plan.

2.8.5 F-MVF
Functional testing of PortalWare

F-MVF-1 Single login

QA will verify that, once registered for a particular role, an end user can successfully log in and is directed to the proper location within PortalWare. Distinctions include the following:

· Partner-A place
· Partner-B place
· Application-Z 2.0

· Application-Z 1.7 (This requirement may be removed.)

Only one login is needed to access all locations applicable to the role.

F-MVF-2 Registration
QA will verify that a user can self-register as a guest, type-a partneror type-b partner (level 1). Additional tests will be run to confirm that a user can be further registered as a level 2 type-a partneror type-b partner. In all cases, QA will check that the information provided during the registration is properly stored in the LDAP and PARTNER databases.

2.8.6 F-MVR
PortalWare Regression Test

F-MVR-1 Legacy test suite run

We will perform another run of the existing PortalWare test procedures. It is likely that the test procedures will need updates. The updates should be done during testing. The test procedures will be maintained for future versions.

F-MVR-2 Ad Hoc content

In the normal course of testing, various ad-hoc tests of the site will be performed. These would include various content, link layout and usability checks.

F-MVR-3 Site map

We will draw a sitemap of PortalWare and ensure each page is visited during testing.

2.9 System Integration

All system integration and integration testing will be done in the QA Staging and Testing Community lab.

2.9.1 I-L2
Level 2 Install and End to End Test

I-L2-1 Spanned L1/L2 Build-out

We will build the complete integrated environment with L1 and L2 routers on separate systems. All Company-A components except Application-B will be installed:

· Product-X L1

· Product-X L2 for Hosted partner
· Product-X L2 with Forwarding Service

· Product-X L2 for the Integrated partner Conduit

· PortalWare on the a generic Web Server

· Applicaton-S 2.0 (Document Services on the L2 and UI on the Web Server)

· Product-X for the generic Web Server (to serve special data forms)

· Product-X 2.X to 3.0 Bridge

I-L2-2 Collapsed L1/L2 Build-out

We will build the complete integrated environment with the L1 and L2 routers on the same server. The server will be replicated to allow distributed testing across two servers. The main purpose of this test is to verify the minimum configuration as recommended by Product-X development engineering. Otherwise, the environment is the same as specified in I-L2-1.

2.9.2 I-L2R
Level 2 Rebuild

I-L2R-1 Fresh rebuild from documented procedure

After we complete a working integration, we will purge all the systems and do a complete rebuild of the environment. We expect to repeat this task until the build-out procedure is clear, repeatable and suitable for final documentation. There are three planned iterations, but there will probably be more.

Planned rebuilds. Each represents an integration milestone.

1) With Application-Z

· ID & Async fix.

· No attachments, error docs or archives.

· No bridge or backwards compatibility

· Link to existing Application-B for testing

2) With Application-Z & Application-B
· Attachments ready

· Error docs ready

· Integrates type-b partner support ready.

3) Code Complete

· Bridge integrated

· Archive service ready

Two staging labs will be maintained. One will be used for testing while the other is being rebuilt by QA. When a rebuild is complete, testing will be shifted to that environment. The deployment team and regional partners will then work to bring the other environment up to match the live testing environment. The process will continue until no more rebuilds are needed.

<<THE REST IS REMOVED, AS IT IS MORE OF THE SAME>>

Functional Testing

 Ship!!!

System Integration

 October November December

Final Testing

OPEN��QA Triage

OPEN��PM Triage

OPEN��[engineer]

CLOSED��QA Lead

FIXED��QA Triage

(or QA engineer)

POSTPONE��PM

VERIFIED��QA Lead

REJECT��QA Triage

dropped (closed by QA)

dropped (accept that it was rejected)

dropped (duplicate, not a bug, never fix)

postpone

fix it!

submit

 resubmit

 reject

 reject

fixed, tested by engineer, and installed

bug checked and appears to not fixed

 fixed

 new

 Code Complete

Enhancement

Request

deemed an enhancement request

 Integration Complete

Integration Testing

Company-A
13
10/26/99

