Client Services Test Strategy Overview
Erich P. Gatejen

Revision 1.0, MaRCH 31, 1997

1.
INTRODUCTION

The Services Test Strategy Overview is intended to provide a generic strategy for QA on Services projects, or any project that uses client/server applications. Naturally, each project will have its own QA strategy. However, this document can be used to help create a project strategy.

2.
OVERVIEW
The Services projects will usually involve client/server technologies. However, an actual may only be one piece of a client/server environment. For instance, a web server could be developed and delivered without also having to create a web browser. So, while this document focuses on a full client/server solution, the practices described can be applied to a portion of a solution.

This document discusses five topics -- general QA issues, QA testing phases, resources, and environments. The general issues are basic information concerning Services and client/server topics. They are covered in this overview. The QA testing phases lists the different phases for QA during a project. For each phase, there is an overview is and a discussion of methods.

2.1
CONSIDERATIONS FOR QUALITY

The following tables describe issues for Services systems. The lists are not definitive. However, they do cover software, system, and QA issues that should be considered when creating a product specific test strategy and plan.

	Client
	General issues.

	End User Application
	This will be operated by an end-user.

Must be robust. Assume there will be no failsafe to protect against data loss or crashes.

Data integrity is critical, but data loss is not ‘fatal’ to product quality.

Error recovery should be virtually invisible to the user.

Usability is an issue.

	Diverse Platforms
	Client software will be ported to a diverse array of platforms.

	Client
	Platform issues.

	Embedded target
	Resources will be limited:

Low memory and/or processing power. Sufficient performance may be difficult to achieve.

 Minimal or no data storage.

There are limited and static communication paths into and out of the device.

Device characteristics:

Possibly no non-volatile data storage. Data loss on power loss.

Battery powered. Usage time may be limited.
User perceives system as a consumer electronics product:

May subject device to greater physical and operation abuse (i.e. yank the battery at “bad” times, etc.)

	Desktop PC target

	PC characteristics:

No inherent power limitations. Software can be left running for extended periods of time.

Display size and UI layout are not standard, though look-and-feel probably will be.

	Notebook PC target
	Notebook characteristics:

Battery powered. Usage time may be limited.

OS often customized by OEM. May create unique UI, power, and other behaviors.

	Client software
	User and usability issues.

	Embedded target
	User perceives system as a consumer electronics product:

Expect easy use.

Desire intuitive use. Commands, buttons, etc. should be logical.

 Menu/navigation depths should not exceed 4.

User Interface is limited:

Small display. The display can clutter.

Difficult input methods: tiny keys, pen point on small screen, hand-writing recognition, etc. Input should be economical.

	Desktop PC target

	PC characteristics:

No inherent power limitations. Software can be left running for extended periods of time.

Display size and UI layout are not standard, though look-and-feel probably will be.

	Notebook PC target
	Notebook characteristics:

Battery powered. Usage time may be limited.

OS often customized by OEM. May create unique UI, power, and other behaviors.

3.
QA TESTING PHASES

QA testing occurs in four basic phases: Module Testing, Integration, Field Verification and Acceptance, and Deployment. Module Testing and Integration are internal testing activities that verify the quality of our software. Field Verification and Acceptance are external testing activities that both verify the software and account for customer acceptance of the product. This testing will often take place within a customer’s infrastructure, on the actual systems on which the software will be used. Deployment testing covers the verification of a new installation of the system to a new or existing customer.

Below is matrix of all the phases. A few have been broken down into sub-phases.

	Phase
	Section
	Purpose

	Module Testing
	3.
	Software component testing.

	Client Module Testing
	3.1
	Client software component testing.

	Server Module Testing
	3.2
	Server software component testing.

	Integration
	3.3
	Component fusion and whole system testing.

	Functional Testing
	3.3.3
	Testing of integrated component functionality.

	System Testing
	3.3.4
	Testing of integrated system.

	Field Verification and Acceptance
	3.4
	Testing of completed system.

	Verification Testing
	3.4.x
	Testing of system in live/real environment.

	Acceptance
	3.4.4
	Customer acceptance testing.

	Deployment
	3.5
	Follow-on product testing for additional installations.

	Branding and New

 Functionality Testing.
	3.5.1
	Testing of installation unique features and software.

	Verification & Acceptance

 Testing
	3.5.2
	Live system testing and customer acceptance.

3.1
CLIENT MODULE TESTING

Client Module Testing consists of the testing of the client application and components in the product. The client is defined as the user software, even if the application under test may perform server type activities. The client platform can be a device, such as a smart phone, or a PC.

This testing will occur before the system is integrated. It should be assumed that the client’s complementary server will not be ready for testing. Further, the client may itself not yet be completed. Therefore, module testing should focus on verifying software units within the client and debugging them before they are integrated. Given such, this testing would coincide with software development and engineering testing.

3.1.1
CLIENT MODULE TESTING METHODS

Below is a list of testing methods that can be used during Client Module Testing:

(1) API Testing. This testing involves writing test applications that exercise an API for the software. This testing will only be appropriate during Client Module Testing if we expect the API to be used by outside software developers.

(2) UI Function Testing. This testing involves interacting with a module’s UI to verify it functions as specified. This is a purely Black-Box testing method.

(3) Data Testing. This testing involves creating data sets to verify a module’s data handling features. For instance, html documents can be created to verify a html parser module correctly processes the data. If available, UI can be used to inject the data into the module. Otherwise, test tools can be created and used.

3.1.2
CLIENT MODULE TESTING PROCESS

This section describes the general testing process for Client Module Testing. During this phase, the software will probably not be advanced enough to provide for regular testing cycles. Therefore, test schedules should be based on the module delivery milestones from the development engineers. A block of testing can be performed for a single module or set of modules as they are available. A module need not have been fully engineer-tested, though some basic verification should show the module is at least testable.

3.1.2.1
BUILD PROCESS
QA will maintain software builds of the client’s base platform. Also, QA will keep a collection of the client modules that have been delivered. When a new or updated module is ready for testing, it will be given to QA. Then, the module will be merged with the existing client module base. At the beginning of the next testing block, the modules will be loaded into a clean client base platform and testing will begin.

Unlike the rest of the QA phases, QA will perform the build activities for client module testing.

3.1.2.2
BASIC ACCEPTANCE TEST

The software will probably not be mature enough for regular BAT testing. Before a module is delivered to QA, the development engineers should verify that the module is at least testable. For example, it can be loaded and executed.

3.1.2.3
SCHEDULED TESTING

After the software build is complete, scheduled testing can begin. There is no special process for scheduled testing during this phase.

3.2
SERVER MODULE TESTING

Server Module Testing consists of the testing of the server system components in the product. The server is defined as the entire system providing the service. In some instances, software on a Services server system will actually act like client software. A system management front end is an example of this. This software will be tested under server module testing, however.

This testing will occur before the system is integrated. It should be assumed that the clients will not be ready for testing with the server. Further, the server may itself not yet be completed. Therefore, module testing should focus on verifying software units within the server and debugging them before they are integrated. Given such, this testing would coincide with software development and engineering testing.

3.2.1
SERVER MODULE TESTING METHODS
Below is a list of testing methods that can be used during Server Module Testing:

(1) API Testing. This testing involves writing test applications that exercise an API for the software. This testing will be common during Server Module Testing, as it will be the only way to exercise functionality. Often, the applications written for server module testing will be reusable as tools during later testing phases. (For example, a application that puts fake customers into the database could still be useful in stress testing during the Integration System Test phase.)

(2) UI Function Testing. This testing involves interacting with a module’s UI to verify it functions as specified. This is a purely Black-Box testing method. This testing will be very uncommon during Server Module Testing.

(3) Data Testing. This testing involves creating data sets to verify a module’s data handling features. This testing would often be used in conjunction with Script Testing.

(4) Script Testing. This testing involves writing scripts that exercise functionality that is exposed to the operating system shell. That is, it performs operations that can be accessed through a OS CLI commands on the host system.

For example, a database can be access through shell and SQL scripts; therefore it can be tested by writing such a script. Often, this method can be used to automate the Data Tests (above).

3.2.2
SERVER MODULE TESTING PROCESS

This section describes the general testing process for System Module Testing. The general process is the same as for Client Module Testing.

3.2.2.1
BUILD PROCESS

The software will be maintained by engineering on a development server (see section 5.1.2). When a block of software is ready, Release Engineering will provide a build to QA.
Unlike the rest of the QA phases, QA will perform the build activities for client module testing.

3.2.2.2
BASIC ACCEPTANCE TEST

Per implementation

3.2.2.3
SCHEDULED TESTING

Per implementation

3.3
INTEGRATION
3.3.1
OVERVIEW

Integration is the period of software development in which inter-dependent components are completed and added to the overall system. The final objective of integration is to have a working client/server system that is ready for live testing. The following picture depicts a client/server setup. This type of fictional depiction will be used to demonstrate concepts throughout the rest of this document.

3.3.2
INTEGRATION TESTING PROCESS
Per implementation
3.3.2.1
SYSTEM BASELINE
Per implementation

3.3.2.2
BASIC ACCEPTANCE TEST

Per implementation

3.3.2.3
SCHEDULED TESTING

Per implementation

3.3.3
FUNCTIONAL TEST

Functional Test verifies the software performs as detailed in the specifications, requirements, and other documents. All Functional Unit Tests will be one of the above types:

	Type
	Purpose

	Functionality
	Verify functionality is as described in documentation.

	Performance
	Measure and analyze speed of specific software functions.

Further, each test will be implemented through one of the following methods:

	Testing Method
	Abbr.
	Description

	Non-Dependent Functional
	NDF
	Test subject does not interact apart from itself.

	Loopback
	LOOP
	Test subject feeds data into and out of itself.

	Local Data Feed
	LOCAL
	Test Data is feed directly into test subject.

	Simulated External Data
	SIM
	External communication is simulated.

The test methods are further explained in sections 3.3.3.1 through 3.3.3.4.

3.3.3.1
NON-DEPENDENT FUNCTIONAL TESTING METHOD (NDF)

Non-Dependent functional testing involves the testing of features that do not require interaction outside of the local environment. The feature does not use external data or communications. Disk-based software installation, configuration, UI and viewing are examples of such features.

3.3.3.2
LOOPBACK TESTING METHOD (LOOP)

Loop back testing involves testing of data paths that do not exit the local system. The data read into the test subject is created by the test subject itself.

3.3.3.3
LOCAL DATA FEED TESTING METHOD (LOCAL)

Local Data Feed Testing involves testing with data that would normally be transported in and out of the local system. However, during this form of testing, the data paths are ‘short-circuited’ and the data is feed to or read from the component directly by a local test application or other mechanism; the data path does not exit the system or use the communication transport facilities.

3.3.3.4
SIMULATED EXTERNAL DATA TESTING METHOD (SIM)

Simulated External Data Testing involves simulating one side of an end-to-end test string. Data will flow into and out of the test subject, whether client or server, as it would in actual operation. A test application or tool will simulate the operation of the end not under test.

3.3.4
SYSTEM TEST

System Test verifies that the software continues to perform as described in specifications, requirements, and other documents, after being integrated into a complete system. Further, testing expands to include additional considerations for quality. Examples are as follows:

	Type
	Purpose

	Reliability
	Verify software maintains data integrity.

	Stress
	Verify software handles stress conditions.

	Performance
	Measure and analyze speed and resource usage across entire system

	Functionality
	Verify functionality is as described in documentation.

	Profile
	Execute a typical use profile and measure MTBF

	Interoperability
	Verify software interoperates with specified non-integrated systems.

Further, each test will be implemented through one of the following methods:

	Testing Method
	Abbr.
	Description

	Non-Dependent System
	NDS
	Test subject does not interact outside of itself.

	System Local Data
	SLD
	Test Data is feed directly into test subject.

	External Data
	EXT
	External communication is simulated.

	End-To-End
	END
	End to End testing with complete live/real system.

The test methods are further explained in sections 3.3.3.1 through 3.3.3.4.

3.3.4.1
NON-DEPENDENT SYSTEM TESTING METHOD (NDS)

Non-Dependent functional testing involves the testing of features that do not require interaction outside of the local environment. The feature does not use external data or communications. Disk-based software installation, configuration, UI and viewing are examples of such features.

3.3.4.2
SYSTEM LOCAL DATA TESTING METHOD (SLD)

Local Data Feed Testing involves testing with data that would normally be transported in and out of the system. However, during this form of testing, data is feed directly into the system by a test tool or other mechanism; the data path does not exit the system.

3.3.4.3
EXTERNAL DATA TESTING METHOD (EXT)

External Data Testing involves testing with a complete client/server environment. The full functionality of both systems is available, including communication facilities. The only difference between this environment and the real-world use of the system is that the external data feeds sources are simulated.

3.3.4.4
END-TO-END TESTING METHOD (END)

End-To-End Testing involves testing on with a complete client/server system under real-world conditions. No part of the string is simulated or generated--all data is live and arrives over actual transports.

3.4
FIELD VERIFICATION AND ACCEPTANCE

Per implementation

3.4.1
NON-DEPENDENT VERIFICATION

Per implementation

3.4.2
CONTROLLED SYSTEM VERIFICATION

Per implementation

3.4.3
LIVE SYSTEM VERIFICATION

Per implementation

3.4.4
ACCEPTANCE PROCESS

Per implementation

3.5
DEPLOYMENT TESTING

Per implementation

3.5.1
BRANDING AND NEW FUNCTIONALITY TESTING

Per implementation

3.5.2
VERIFICATION AND ACCEPTANCE TESTING

Per implementation

3.6
PLATFORM ACCEPTANCE

Per implementation

4.
RESOURCES

4.1
TOOLS

Per implementation

4.1.1
QA AND TESTING TOOLS

Per implementation

4.1.2
SOFTWARE TESTING TOOLS

Per implementation

4.2
TEST DATA REPOSITORY

Per implementation

 external

 data feeds

Server Data Transport Facility

Server Data Storage

Client Data Transport Facility

Client Data Storage

Client Function

Server

Function

Test Subject is isolated from the rest of the system.

Local Data Storage

Client or Server

Data Storage

Client or Server Data Transport

Local Data Transport Facility

Client or Server

Function

 Function

Under

Test

Client or Server Data Transport

Client or Server

Data Storage

Client or Server

Function

Test Subjects are isolated

 from the rest of the system.

Test Subject only interacts with data is has created itself.

Local Data Transport Facility

Local Data Storage

 Function

Under

Test

Client or Server Data Transport

real data

 sim

 data

feed snapshot

Data can be generated or taken from a real source, such as a server’s data storage or snapshot of a live

data feed.

Test Subjects are isolated

from the rest of the system

Simulated

Data

Generator

Local Data Transport Facility

A data injector introduces

data to the system.

Local Data Storage

Data

Injector

Client or Server

Data Storage

Client or Server

Function

 Function

Under

Test

A Simulator behaves as the client or server across a communication path. Like the Injector, it uses data from a outside source.

 sim

 data

real data

feed snapshot

Client or Server

Simulator	

Simulator

Data Transport

Facility

Simulated

Data

Generator

	

Test Subjects are isolated

from the rest of the system

Client or Server Data Transport

Client or Server

Data Storage

Client or Server

Function

Local Data Transport Facility

Local Data Storage

 Function

Under

Test

Client or Server

Data Storage

 Function

Under

Test

Local Data Storage

Test Subject is isolated from the rest of the system.

Client or Server Data Transport

Local Data Transport Facility

Client or Server

Function

 sim

 data

Simulated

Data

Generator

	

external data feed

Data

Injector

Server Data Transport Facility

Server Data Storage

Client Data Transport Facility

Client Data Storage

Client Function

Server

Function

external data feed

External Feed

Source Simulator	

Simulator

Data Transport

Facility

Server Data Transport Facility

Server Data Storage

Client Data Transport Facility

Client Data Storage

Client Function

Server

Function

 external

 data feeds

Server Data Transport Facility

Server Data Storage

Client Data Transport Facility

Client Data Storage

Client Function

Server

Function

