
Quality Assurance Test Plan (Draft)

<Template>
<Author>

DRAFT version, <Date>

Revision History

	DATE
	VERSION
	WHO
	DESCRIPTION

	
	
	
	Initial draft of the <project> QA Test Plan.

Approvals

	NAME
	SIGNATURE
	DATE

	Director of QA

<Name>

	
	

	QA Project Manager

<Name>

	
	

	QA Lead

<Name>

	
	

	Director of Engineering

<Name>

	
	

	Engineering Project Lead

<Name>

	
	

	Product Manager

<Name>

	
	

1. Scope

1.1 Identification

This is the Quality Assurance Test Plan for the <project name> project. It describes the test development and execution.

1.2 Purpose

The purpose of the <project> Quality Assurance Test Plan is to define the testing effort by <>. This document will specify testing methodology in both design and execution. It will model the test schedule based upon testing cycles and testing milestones; the actual project schedule may vary. Also, it will partition the testing into test phases and describe the entrance and exit criteria for each.

1.3 Introduction

<This section gives a general overview of the test approach>.

2. Test Environment

2.1 Test Targets

A test target is a system under test. The follow describes the three different system configurations that will be used during testing.

2.1.1 <Configution #1>

<Describe the test target and when it will be used. For instance, the NT emulation will be used during functional testing for components that do not require live network connections.>

2.1.2 <Configution #2>

Add as many sections as necessary to cover all the test targets. The following is a list of common targets:

· NT Emulation

· Reference Board

· Predecessor Hardware

· Prototype Hardware

· Final Hardware
2.1.3 <Configution #X>

2.2 Network/Live Testing Environments

This section describes the testing environments that can be used when testing network (cellular, data, or otherwise) dependent applications. Since actual network connectivity will not be available throughout QA testing, other environments will be used to exercise as much software functionality as possible as soon as possible.

<The following is an example of the environments used for Project-X. They are fairly generic and could probably be used for any handset project. Internet-based testing would be somewhat different, though the idea is the same. Emulation testing is local, intra-system testing. Live testing reaches outside—the Internet itself.>

2.2.1 Emulation

Emulation testing is done on NT Emulation software. A test tool simulates connectivity by interfacing with the OS components and Application under test. For example, the test tool could introduce messages into the inbox, thus simulating the receipt of a message.

2.2.2 Connected Emulation

Connected Emulation testing is done on NT Emulation software. The system connects through a serial port and/or modem. This testing can exercise most of the software, except low-level drivers and the HAL interface.

2.2.3 Simulated

Simulated testing is the same as Emulation testing, except it is run on the Prototype Hardware or the Final Hardware.

2.2.4 Live

Live testing is run on the Prototype or Final Hardware in the live networks. Obviously, this testing is the most accurate.

2.2.5 Application Shell

Application Shell testing can run in any environment. It is the testing of application features that do not require network connectivity.

2.3 Co-Location and/or Field Testing Plan

<This section can describe the plan to support testing outside Company-A or to test with the customer at their location (or possibly ours).>

3. Test Phases

Testing is separated into three major phases: functional test, system test, and acceptance test. During functional test, software components will be tested as they are completed and integrated into <project name> platform. System testing begins after all software components have been integrated and tested though functional test. Acceptance testing begins when all planned system test objectives have been met.

Each test phase is broken down into test cycles. A test cycle begins when a new software build is delivered to QA.

<The following is an example of an overview schedule.>

Below is an overview schedule for the test phases.

	Software Dev Milestone
	P3

	QA Phase
	Pre-functional Test

	Build
	QIII
	QIV
	QV
	QVI
	QVII

	Date into QA
	1/5/98
	1/19/98
	2/2/98
	2/16/98
	3/2/98

	
	
	
	
	
	

	
	
	
	
	
	

	Software Dev Milestone
	P4
	

	QA Phase
	Functional Test
	

	Build
	QVIII
	QIX
	QX
	QXI
	

	Date into QA
	3/16/98
	3/30/98
	4/13/98
	4/27/98
	

	
	
	
	
	
	

	
	
	
	
	
	

	Software Dev Milestone
	P5

	QA Phase
	System Test

	Build
	QXII
	QXIII
	QXIV
	QXV
	QXVI

	Date into QA
	5/11/98
	5/25/98
	6/8/98
	6/22/98
	6/29/98

	
	
	
	
	
	

	
	
	
	
	
	

	Software Dev Milestone
	P6
	
	P7
	
	

	QA Phase
	Acceptance
	
	
	

	Build
	QXVII
	QXVIII
	
	
	

	Date into QA
	7/6/98
	7/20/98
	8/3/98
	
	

4. Test Items

The Test Items are the different areas and aspects of testing that will be applied to the software. Each Test Item will have one or more related Test Design Specifications and Test Procedures. The general test approach for each is described below.

4.1 Component List

4.2 Functional Test Items

4.2.1 Overview

The Functional Test Items are broken out by headline-component. Each Test item directly correlates to a component. Regardless of the particular component, common tests will be run on all Functional Test Items. Additional considerations for testing are described in the Additional Items sections below.

4.2.2 Common Tests

These types of tests will be done for each Functional Test Item.

(1) Specification Testing

Specification Testing verifies that the software performs according to the specification. Test Cases will be derived from the Specification, with each having a reference directly into specification documentation. The Test Design will list the test cases by purpose, each given with a unique identifier and document section/line reference. All line items from the specification should be covered by Specification Test Cases.

Specification Test Cases will generally be implemented as Black Box test steps or checklists. Test steps will detail the specific tester actions and the expected results. Checklists will describe points of verification, whereby the tester will use the specification to determine how to exercise the function and to verify the results.

(2) <more testing methods>

<Add additional sections as needed. Generally, only describe testing methods that differ from those described in the other documents, such as the QA manual.>

4.2.3 Functional Test Items

Testing methods as described in the Company-A <project name> Quality Assurance Plan and in section 4.2.2 above will be used during testing. Methods will not be mentioned below unless there are special considerations.

(1) Example: Calendar

Example: The calendar is stored in a database. The database should be deliberately corrupted to explore how it is loaded into the calendar application….

(2) Example: Alarm Clock

There are no additional considerations.

4.2.3 Addition Items

<Add additional items as needed.>

4.3 System Test Items

The System Test Items are divided into major test objectives: Application System Test, MTBF/Typical Use Profile, System Performance, and Asynchronous Events. They are described in the sections below.

4.3.1 Application System Test

Application System Test verifies the code-complete applications, with testing that is more aggressive than functional unit testing. Each application will be subjected to <three> types of tests: Stress, Integration, Regression, <and more if needed.> The Application System Test Item is divided by application, with the each application segmented into the four test types.

The following is a list of applications that will be tested. Each will have a separate section in the Application System Test Procedure:

1- Example: Calendar

2- Example: Clock

3- <more as needed>
(1) Stress

Example: Stress testing includes all testing that meets and attempts to exceed limits imposed by the software and hardware. These limits include available resources, specified limits in functionality, and environmental conditions. The resources that will be tested are available memory and processing power. Limits in functionality are specified boundary conditions that saturate system resources. A simple boundary, such as the maximum number of phone book entries, is not itself a stress case. However, should the maximum number of entries consume all available memory, then it would be a stress case.

(2) Integration

Example: Integration tests cover application and network interactions that could not be tested during Functional test.

(3) Regression

Example: Regression tests are selected from the Functional tests. A batch of Functional tests will be identified and collected to make this section of system testing. There are three reasons why a test may be chosen. First, the test covers a wide range of functionality both efficiently and quickly. Second, the test covers a portion of the software that has had numerous bugs. Last, the test covers a portion of the software that QA suspects is not stable.

(4) <additional sections…>

4.3.2 MTBF/Typical Use Profile

The MTBF/Typical Use Profile Tests expose the system to a usage pattern that is modeled after how the device might be used by a customer over a period of time. Lengthy periods of use are simulated with clock manipulation and prepared data. The test results will be used to calculate a MTBF metric.

4.3.3 System Performance

System Performance Tests measure the performance of the system in ways that could not be measured during Functional test. For example, measuring the launch time of an application can be tested as part of Functional Test; measure the launch time of all applications in succession would be a System Performance test. This could not be tested during Functional Test because not all applications would be integrated and available.

4.3.4 Asynchronous Events

<This testing is useful for smart phones where you can use the phone functions and the application functions at the same time. If the product cannot "do more than one thing at a time," then this section is probably not useful and should be deleted. >

Asynchronous Events testing verifies the system handling of asynchronous events. The tests are build from data collected during Functional Test design and implementation. The following describes the procedure to create the Asynchronous Evens tests.

1) Using the list of discrete Event behaviors, create a Test Case for each item.

2) Compile the Test Cases into one Asynchronous System Test Procedure.

3) Segment the Test Procedure into network and non-network system Test Cases.

The Test Procedure is segmented into network and non-network sections because we will only be able to test the network section in the live cell-network environment. We will be able to run the non-network section earlier in the schedule.

4.4 Acceptance Test Items

The Acceptance Test Items are divided into areas: Regression Suite and Acceptance Suite. They are described in the sections below.

4.4.1 Regression Suite

The Regression Suite is a collection of Test Cases that verify general system functionality continues to operate properly. The test cases will be selected from the functional test and system test procedures. They will be collected into a single document.

4.4.2 Acceptance Suite

The Acceptance Suite is contains tests that verify the system remains stable and robust. New test cases will be written for areas of the software that might still have problems. Prime candidates for these tests are areas that have shown high bug rates in earlier testing or that are complex components that have traditionally had many problems—such as connectivity.

4.5 Basic Acceptance Test (BAT) Item

The Basic Acceptance Test verifies the testability of a build. It covers the basic functionality of the software with regard to the tests planned for a particular test cycle. A few high-level operations for each application will be performed. The BAT should take no longer than 8 man/hours to execute.

5. Criteria

This section contains criteria for acceptance at each testing milestone in the project.

5.1 P4 Acceptance - Code Complete, ready for functional test.

· The software is code complete.

· All planned functional tests can be run.

· There are no open functional test stopper bugs (Priority 1).

5.2 P5 Acceptance – Functional Test Complete, ready for system test.

· All functional tests have been run.

· There are no open functional test or system test stoppers older than 3 days (Priority 1 and 2).

· A functional test report has been written.

· Integration of P5 software with hardware is complete and tested on the final production hardware, provided that the hardware is delivered on schedule.

· Can perform planned system tests.

5.3 P6 Acceptance – System Test complete, ready for final acceptance

· All system tests have been executed. All tests that have not passed will have an associated bug report that has been closed, suspended, or fixed.

· Have decided the final status of all bugs found prior to P6 acceptance. All bugs will be closed, closed through suspension, closed through a fix, or identified as to be fixed.

· There are no open bugs older than 3 days.

· There are no open priority 1, 2, or 3 bugs.

· A system test report has been written.

5.4. P7 Acceptance – Final Acceptance

· There are no open bugs.

· Final acceptance will be complete when acceptance testing is complete or product is shipped.

· A QA report has been written.

6. Test Design

Test Design describes the general test approach for each test item. This section includes a list of all Test Procedures that will be created during the project. These test procedures have been derived from the Test Items described in section 4.

6.1 Test Procedure Table

Each Test Procedure will be a separate document. They are given a unique identification. References to the related test items and test designs are shown below.

	Test Procedure
	Unique ID
	Test Item Ref.
	Test Design Ref.

	Example: Calendar Functional Test
	CAL-F
	4.1.2
	6.3.1

	Example: Clock Functional Test
	CLOCK-F
	4.1.3
	6.3.2

	<more, as needed>
	
	
	

	
	
	
	

	Example: Calendar System Test
	CAL-S
	4.2.1
	6.3.11

	Example: Clock System Test
	CLOCK-S
	4.2.1
	6.3.12

	Example: MTBF/Typical Use Profile Test
	MTBF-S
	4.2.2
	6.3.19

	Example: System Performance Test
	PERF-S
	4.2.3
	6.3.20

	Example: Asynchronous Events Test
	ASYNC-S
	4.2.4
	6.3.21

	
	
	
	

	Example: Regression Suite
	REGRESS-A
	4.3.1
	6.3.22

	Example: Acceptance Suite
	ACCEPT-A
	4.3.2
	6.3.23

	
	
	
	

	Example: Basic Acceptance Test
	BAT
	4.4
	6.3.24

	
	
	
	

6.2 Test Design by Procedure

The Test Design for each procedure is in Attachment A at the end of this document.

7. Test Schedule

7.1 Detailed QA Phase Schedule

The follow schedule expands on the Test Phase schedule by showing the completion dates for Test Procedures and the dates for the delivery of functionality into QA.

<The following is an example schedule.>

	Software Dev Milestone
	P3

	QA Phase
	Pre-functional Test

	Build
	QI
	QII
	QIII
	QIV

	Date into QA
	1/5/98
	1/19/98
	2/2/98
	2/16/98

	
	
	
	
	

	Expected Functionality
	Calculator
	Notebook
	Calendar
	Fax

	
	
	
	Phone
	

	
	
	
	
	

	QA Deliverables
	CALC-F
	NOTES-F
	CAL-F
	FAX-F

	
	BAT
	
	PHONE-F
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	Software Dev Milestone
	P4

	QA Phase
	Functional Test

	Build
	QV
	QVI
	QVII
	QVIII

	Date into QA
	3/2/98
	3/16/98
	3/30/98
	4/13/98

	
	
	
	
	

	Expected Functionality
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	QA Deliverables
	
	
	FAX-S
	CALC-S

	
	
	
	PHONE-S
	NOTES-S

	
	
	
	
	CAL-S

	
	
	
	
	MTBF-S

	
	
	
	
	PERF-S

	
	
	
	
	ASYNCH-S

	
	
	
	
	

	
	
	
	
	

	Software Dev Milestone
	P5

	QA Phase
	System Test

	Build
	QIX
	QX
	QXI
	QXII
	QXIII

	Date into QA
	4/27/98
	5/11/98
	5/25/98
	6/8/98
	6/15/98

	
	
	
	
	
	

	Expected Functionality
	
	
	
	
	

	
	
	
	
	
	

	QA Deliverables
	
	REGRESS-A
	ACCEPT-A
	

	
	
	
	
	
	

	
	
	
	
	
	

	Software Dev Milestone
	P6
	P7
	
	

	QA Phase
	Acceptance
	
	
	

	Build
	QXIV
	QXV
	
	
	

	Date into QA
	6/22/98
	7/6/98
	7/20/98
	
	

7.2 Detailed QA Testing Schedule

The following schedule details when test procedures are scheduled for execution.

	Test procedure
	Pre-functional Test
	Functional Test

	
	QI
	QII
	QIII
	QIV
	QV
	QVI
	QVII
	QVIII

	
	1/5/98
	1/19/98
	2/2/98
	2/16/98
	3/2/98
	3/16/98
	3/30/98
	4/13/98

	CAL-F
	X
	
	X
	
	X
	X
	X
	X

	NOTES-F
	
	X
	
	X
	X
	
	X
	

	CAL-F
	
	
	X
	
	X
	
	X
	X

	PHONE-F
	
	
	X
	
	X
	
	X
	X

	FAX-F
	
	
	
	X
	X
	X
	X
	X

	
	
	
	
	
	
	
	
	

	BAT
	X
	X
	X
	X
	X
	X
	X
	X

	Test procedure
	System Test
	Acceptance

	
	QIX
	QX
	QXI
	QXII
	QXIII
	QXIV
	QXV

	
	4/27/98
	5/11/98
	5/25/98
	6/8/98
	6/15/89
	6/22/98
	7/6/98

	CAL-S
	X
	
	X
	
	X
	
	

	NOTES-S
	X
	
	X
	
	
	
	

	CAL-S
	X
	
	X
	
	X
	
	

	PHONE-S
	X
	X
	X
	
	X
	
	

	FAX-S
	X
	
	X
	
	X
	
	

	MTBF-S
	
	X
	X
	X
	X
	
	

	PERF-S
	
	X
	
	X
	
	
	

	ASYNC-S
	
	X
	
	X
	X
	
	

	
	
	
	
	
	
	
	

	REGRESS-A
	
	
	
	
	
	X
	X

	ACCEPT-A
	
	
	
	
	
	X
	X

	
	
	
	
	
	
	
	

	BAT
	X
	X
	X
	X
	X
	X
	X

11

