Capacity Planning for Project-X
Quality Assurance
DRAFT 2, 20 DECEMBER 1998
Revision History
	DATE
	VERSION
	WHO
	DESCRIPTION

	01/DEC/98
	1.0
	EPG
	Initial version, complete baseline test and results

	19/DEC/98
	1.1
	KMB
	Clean up and complete

1.
Introduction
4
2.
Baseline data
4
2.1
Baseline Test Environment
4
2.2
Baseline Test Method
4
2.3
Baseline Results
4
3.
Projected Server Performance
5
3.1
HTML/Interactive Service
5
4.
Recommendation
6
4.1
NT Request Handlers
7
4.2
SQL Database Servers
7
5.
Conclusions and Recommendations
7

1. Introduction

This document provides information that can be used for Project-X server capacity planning.

2. Baseline data

The baseline data describes server performance for a specific environment. The data was derived from performance testing. We will use this data to make projections for performance in other environments and to explain capacity models (shown in sections 3 and 4 below).

2.1 Baseline Test Environment

One UltraSPARC-1

· 1cpu, 128mb ram, 9gig standard SCSI hard-disk.

· Hosts Oracle Database Server

· Also hosts development databases, which will negatively impact performance.

One NT Workstation

· 1 450mhz CPU, 256mb ram, 9gig standard hard disk.

· Hosts Project-X Server.

· Did not perform content loads during tests.
Two NT Workstations

· Hosts the Java-based test tool. The tool acts as a user agent by posting scripted requests to the server.

· Able to simulate 10 hits per-second (5 hits/sec each).

2.2 Baseline Test Method

The test tool can simulate over 600 simultaneous users. A 'simultaneous user' is someone that is logged into the server and able to post a request at any given moment. In technical terms, they have a session logged with the Project-X server. Since a real-world user cannot physically post a request as fast as a computer-simulated user, the test tool and test scripts would post request from a simulated user at a realistic rate that was derived from studying actual usage logs. This rate is anywhere between 8 seconds and 45 seconds.

A high stress test was used that gave a maximum hit rate of 10 hits/sec. The test simulated interactive users and thus used the HTML interface.

At any time that the server response time exceeded 5 seconds the server was said to have reached it 'peek service rate.' That is, when response time breaks the 5-second threshold, the server cannot handle any increased workload.

The test environment was not optimized. We were using JDK 1.1.7, whereas we expect notable performance improvements when we switch to JDK 1.2. Also, the database host is neither optimized nor dedicated for the testing. It was a significant bottleneck during some parts of the test. Also, the Project-X server software requires some tuning. We noted that CPU utilization on the Project-X host machine never exceed 45%. This tuning and removing the database bottleneck should drastically improve performance.

NOTE: The 5-second response time is an ASSUMPTION for capacity planning. A different requirement will result in different needs for capacity and thus infrastructure.

2.3 Baseline Results

The system is able to service a sustained peek rate of 5.5 hits/second. Any increased load degraded server performance. At the peek load, the server response time averaged 3.5 seconds. At over the peek rate, the average server response time quickly climbed over 6 seconds and at one point during the test it exceeded 12 seconds.

On average, there is little difference in the strain that an interactive service request (e.g. HTML) puts on the server compared to a message service request (e.g. SMS). HTML interface hits tend to mix higher-strain content requests with low-strain static requests, whereas SMS hits tend to all be medium-strain content requests. In the end, it all averages out to be the same strain on the server. Of course, there are major differences in how SMS users and HTML users actually use the service.

The maximum service rate was 13 hits/second. However, this could not be sustained for more than a few seconds. The server could service near 8 hits/second for a few seconds, but we suspect that the database bottleneck prevents this from being the sustained peek rate.

Memory utilization never became an issue during the test. The hosts system had 256MB of memory available; the server never used more than 7.5MB. Robust caching of content in memory could dramatically improve performance.

3. Projected Server Performance

This section describes capacity for the baseline system given the baseline results shown above. We use this as a basis for describing the capacity models in section 4. Capacity will be different between an interactive service and a message-based service.

Capacity is given as three values: Total subscribers, Simultaneous users, and Simultaneous hits. 'Total subscribers' is the total number of users that have access to the service. 'Simultaneous users' is the number of users that may be actively using the service at any given moment. Because a user is active with the service, that doesn't mean they are constantly interacting with it. Over the course of a user session, most of their time will be spent viewing and interacting with the content on THIER device, as opposed to actually fetching information from server. (For messaging services, transport latency is another factor.) Finally, 'Simultaneous hits' is the total number of hits the server can service at the same time over any given period of time.

From baseline testing we know a base value for simultaneous hits against one server machine: 5.5 hits per second. We can work back to derive the other two values. Unfortunately, this is far from an exact science; we will have to use a number of assumptions. The assumptions differ based on the type of service (e.g. simple message, interactive, etc.), and we will examine the case of an HTML interactive service below.
3.1 HTML/Interactive Service

This section will estimate capacity for a baseline (one server) system serving an interactive HTML-based service. Assumptions are listed and then used to calculate the 3 values for capacity.

Assumption 1: Only 1/650th of the subscribed users will be actively using the service at any given time.

This is the softest of the four assumptions. Typically, a hard number for this assumption can only be derived from studying the actual service over a period of months. However, there are a few points that support this estimate. First, in other similar services we have seen that users tend not to "surf" information services, as they would general or entertainment services/web-pages. Second, this type of service is not an "on-line" service where interaction is very session-based; that is, they sit down, log-in, continuously interact for a significant period of time, and then log-out. Such services will see up to 1/40th of their subscriber-base active at any time. Instead, we expect users to log-in, look for a specific piece of information, and log-out. Whereas an online service might have a user logged-in for a half-hour or more, information service would see sporadic sessions that are relatively short--perhaps even just a minute each.

This might suggest a ratio much lower than 1 in 1000, but study of current Project-X services has shown that usage tends to cluster at certain points of the day. For instance, users tend to look for stock quotes shortly after market open and market close. Usage will spike during those hours. Since capacity planning requires we look at the worse cases (or peek usage periods), we will go with a higher rate of usage for this assumption.

Assumption 2: Only 1/1 of the active users (referred to as simultaneous users in section 2) will be interacting with the server at any given time.

An active user is someone logged onto the service and able to send a request to the service any time. "Interacting" is actually making a request from the service. An active user will not be interacting with the service all of the time. They will take time to read the screen, make decisions about what to do next, perhaps take a coffee break, and all sorts of things that keep them from sending a constant stream of requests to the service.

This ratio is much lower with on-line services than it would be for an information service. As mentioned in assumption 1, while usage is more sporadic, it is more concentrated when the when a user is active. On-line services will typically see 1/5th of the active users actually interacting at any given time. Since we expect information service users to be more focused, 1/1 is a good worse case assumption.

Assumption 3: The user expects a service time less than 5 seconds.

This is not complete turn-around time! It completely ignores transport latency and other similar factors (which actually work in our favor). Rather, it states the maximum time the server itself should take to service a request. This is the 'server response time.'

Assumption 4: A user interacting with the service will do so every 12 seconds.

Studies of usage logs show that this number will range between 8 seconds and 45 seconds. Since we are using worse case numbers, this assumption uses a value closer to 8. We do not use 8 because external factors, such as latency and user response speed, will not dip below 12 seconds. (Network transport would have to be instantaneous and the user would have to not read the content to be any faster). This 12-second value was taken from an old Toshiba requirements document.
Capacity Values

Using these assumptions, we can derive the capacity values. For these calculations, we will use 1 minute as the basic unit of time. The baseline data shows that the server can service 5.5 hits/second while ensuring the server response time is less than 5 seconds.

Over the period of a minute, an interacting user can 'hit' the service 5 times. In the same minute, the server can serve 330 hits (60 seconds times 5.5 hits/second). Therefore, the service can handle 66 interacting users in a minute. Given assumption 2, this means that the service can handle 66 simultaneous users. Finally, given assumption 1, the service can handle 42,900 subscribed users.

Total subscribers = 42,900

Simultaneous users = 66

Simultaneous hits = 5.5 per second.

4. Recommendation

The following is a detailed recommendation for deploying a 1,000,000-subscriber service. All machines must be on a data bus with the capacity of 100 megabit Ethernet, and the service will need a T3 connection to subscriber clients, presumably on the internet.

This is only a sample configuration (see diagram below). Other configurations may work equally well.

4.1 NT Request Handlers

Given the information above in section 3, to handle 1,000,000 subscribers there should be 24 NT Request Handlers. Each such system could be a single-CPU 450mhz PC running Microsoft Windows NT software. Each system should be identical and interchangeable. All will run the same software. Using a large number of inexpensive machines should be more cost effective than a few very powerful servers, and also reduces the likelihood of a single point of failure.

Do note that this assumes the performance numbers presented in section 2.0. Since we expect dramatic improvements in performance in the very near future, the number of systems actually needed should be lower. Also, robust cache schemes could further reduce the number of systems needed.

Since each system is identical, a user can access any system for the exact same service. Load can be balanced outside of the Project-X service. External routers and/or sub-networking can provide a robust way to distribute the load. Companies providing such networking hardware include Veritas and Cisco. We examined other possible schemes, such as request brokering, and concluded that they cause more problems than they solve.
4.2 SQL Database Servers

The two database servers are hosted on Sun Sparc systems. We recommend that each be at minimum an Ultra Enterprise-2 class system.

The databases should be mirrored. Therefore, the request handlers can query from either machine. A sub-set of the request handlers should work with one machine, while the remaining work with the other. Alternatively, the content and user database instances can be held on the two different machines. Such database tuning issues need to be explored and optimized for every individual service.

If robust logging and statistic gathering facilities are needed, it might be useful to have a third database host. This host need not be as powerful as the other two hosts.

5. Conclusions and Recommendations
Preliminary baseline tests conclude that one PROJECT-X 2.0 server can consistently handle 5.5 requests per second. These baseline tests are quite conservative. The 5.5 hits per second result will improve with use of JDK 2.0, Sun’s HotSpot JIT technology, and easy server optimizations. Also, proper caching (in memory and on the file system) and database tuning will greatly improve system performance. Lastly, price performance for PROJECT-X 2.0 on different platforms and operating systems has yet to be established, so a more price effective platform may be discovered. However, if the preliminary target is a million users, it would be safer to prepare the full recommended hardware configuration, and use the upcoming performance increases to freely scale to a larger number of users.

Our four assumptions produced an estimate that a full service supporting a million subscribed users would need to handle 128 hits/second. This result is absolutely only an estimate, and these assumptions could be built in many ways. The number of request handler machines is strictly proportional to the number of simultaneous hits subscribed users make at the system’s peak load, divided by the number of hits per second that a single server can support.

This document will continue to be frequently revised and updated. Please direct questions and comments to the PROJECT-X core server engineering team.

To Internet

SQL Database

Server

Mirror 2

SQL Database

Server

Mirror 1

NT Request

Handler 23

NT Request

Handler 2

NT Request

Handler 1

1/30/2007
1

