Automated Testing Project
1- Different levels of Testing.

This denitrified the basic levels of testing in terms of automation.

	Test Level
	Type of Automation

	APPLICATION TESTING
	Executable Test Scripts.

Input Record/Playback.

UI Object Interaction.

Screen Compare Facility.

	SYSTEM/INTEGRATION TESTING
	Bundled Test Applications.

Managed Environment.

	UNIT TESTING
	Autonomous Test Applications.

2- What we have now.

This describes what is available today.

Project-Q testing was broken into two sections: component testing and unit testing. The component tests consisted of test applications and test lists. The unit tests were C++ test applications and associated test specifications.

	Test Type
	Pros
	Cons

	Component
	- Reusable test applications.
	- Test applications were not very automated. Testing required user interaction with application.
- Specific script language is dead

	Unit
	- Reusable test applications.

- Semi-automated testing.

- Some allowed test data to be read from a file, making them automatic once executed.

- Covered unit testing and, to some degree, system testing objectives.
	- Some test applications required user interaction.

- Applications will have to be modified to work with Project-Q 2.0.

- Will not work on embedded hardware.

The Component tests will have to be rewritten in Java or discarded.

There are few other automated testing tools available. Below lists what we have:

- Simple record/playback facility.

- Screen comparison within WinNT environment using standard WinNT tools.

	Record/Playback
	A simple input playback/record facility is build into Liberty. It will not work with the device.

	Screen Verification.
	This can be done within WinNT environment using standard WinNT tools. Not Automated.

	Debugger
	There is a debugger. However, it will offer little support for automated testing besides data mining.

3- What we want.

Our goals are:

- Run on embedded system and development platform.

- Complete automation.

- Decent performance, in terms of how long it takes to run the tests.

- Manageable control environment for testing.

These are our ultimate goals. Near term reality may be much different.

The next several sections will break down the goals and describe what obstacles there are.

3.1- Platform independent automation.

The Project-Q automated test solution was difficult, if not impossible, to use with device testing. We want to avoid this problem with Project-X automated testing.

The problems and issues:

(1) I/O for Test Apps and Tools.

The test apps and tools will need communicate or read/write data. Unfortunately, we can make no assumptions on what I/O facilities will be available for a device based test app/tool to us. A file system for reading/writing files may not exist. No wired serial ports may be available.
(2) Flexible UI

The UI rendering can and probably will be different from system to system. Test tools can make no assumptions about how the screen will look during a test. The screen bitmap cannot be binary-compared to verify test results.

(3) OS and Hardware Services

As with the differences in I/O facilities, availability of other services cannot be assumed.

3.2- Complete Automation

So far, we do not have complete automation. Below are some of the problems and issues:

(1) Standard Test Application model.

Currently, there is not standard model for creating test applications. Therefore, they support differing degrees of automation, even when the tests themselves do not prevent complete automation. Also, these leaves differing ‘launch’ methods for loading and starting a test.

(2) Test Manager.

Currently, there is no central tool that can manage a test environment. Such a tool would be useful in marshalling an automated test session. It would launch, run, and verify test apps in a defined sequence.

(3) Visual Verification.

Currently, many tests require visual verification to check results. Automation through bitmap comparison could be useful, but would not enable complete automation. The screens can change, not just from platform to platform, but from test run to test run of the same test.

3.3- Decent Performance.

The ability to quickly run a suite of tests is key to making the automation tools useful to development engineers. Also, time is money, and performance is always a good thing.

Below is a list of things that can hamper performance:

(1) Hardware.

Often, the target platforms have slower CPUs than would be found in emulation environment.

(2) Communications.

The target platforms usually have low-speed communication ports. Moving test data and control information from the host testing system to the test target system can take a lot of time.

(3) Bitmap Verification.

This method, as is used in GEOS ATS, requires two bitmaps to be bit compared. This takes time.

3.4- Manageable Control Environment.

Currently, there is none for Project-X. The Project-Q Automated Test System uses a dedicated debugging loop and it is far from being manageable. Below is a list of features that a Control Environment should have:

(1) Launch, Run, Verify Test Applications

The system should be able to load a test app onto the target and execute it. Thereafter, it would control the test application, feed it data, and perform other service tasks. Finally, it will verify and record the results of the test run.

(2) Enable Application (Black-Box) Automated Testing.

The system can play/execute scripts or recorded session for testing of applications on the target. It would support bitmap screen verification and UI object verification. This is much like what Visual Test currently does.

(3) Test Suite Management

The system could orginize tests into suites and executes them in sequence. It would gather and coalesce test results and data.

4- What We Could Do

We gave some though on what could be done to meet our goals. The technical details are not necessarily correct. However, we did get some working ideas of how to proceed.

This is a basic diagram of the system. The target can be on the NT emulation system or target device. The Host is an NT based application.

Explanation of the components:

· Test Data, Test Data, Etc. is the general repository of files used in testing.

· Test Management Application is a Win NT based application that controls the test environment. It works with the ATS stub to start, manage, and end testing--be it a test application or application script.

· HAL is the hardware abstraction layer that provides a standard API to test applications and ATS stub for communicating with the Test Management Application.

· Test Applications are the C++ or Java applications written to support unit, module, or system testing of the operating environment--as opposed to the applications.

· Subsystem Services are the OS based functions that are used for Script playback and verification, such as the Input Manager or a screen dump utility.

· Application Under Test is the target of application testing.

Data

&

Actions

Control

TEST MANAGEMENT

APPLICATION

TARGET DEVICE

or NT EMULATION

NT HOST SYSTEM

Test Data, Test Scripts, Etc.

Subsystem

Services

ATS Stub

Application Under Test

(Actual app for platform)

App’s UI and I/O Objects

HAL

Test Applications	

for unit and system/

integration testing

